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• SDN, IOT, IOE, CPS, etc.. 
• Compute/control technology 
• Industrialization 
• Money/finance/lobbyists/etc 
• Society/agriculture/states  
• Weapons 
• Bipedalism 
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• Warm blood 
• Flight 
• Mitochondria 
• Oxygen 
• Translation (ribosomes) 
• Glycolysis  
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• SDN, NFV, IOT, IOE, CPS 
• Compute/control technology 
• Industrialization 
• Money/finance/lobbyists/etc 
• Society/agriculture/states  
• Weapons 
• Bipedalism (balance, 

cardiovascular physiology) 
• Maternal care 
• Warm blood 
• Flight (turbulence) 
• Mitochondria 
• Oxygen 
• Translation (ribosomes) 
• Glycolysis  
• Cells 

Theory of 
• Evolution 
• Architecture 
• Complexity 
• Networks 

Fast 
Flexible 

Apps 

OS 
HW 

Gene 

Trans* 
Protein 

Cerebellum 
Cortex 

Reflex 



{case study} 
U Theorems+ 

• Lots of aerospace 
• Wildfire ecology 
• Earthquakes 
• Physics:  

– turbulence,  
– stat mech (QM?) 

• “Toy”:  
– Lego 
– clothing, fashion 

• Buildings, cities 
• Synesthesia 

 
 

• Brains 
• Bugs (microbes, ants) 
• Nets/Grids (cyberphys) 
• Medical physiology 

• SDN, IOT, IOE, CPS, etc. 
• Compute/control technology 
• Industrialization 
• Money/finance/lobbyists/etc 
• Society/agriculture/states  
• Weapons 
• Bipedalism 
• Maternal care 
• Warm blood 
• Flight 
• Mitochondria 
• Oxygen 
• Translation (ribosomes) 
• Glycolysis  



Theorems+ 

• Compute/control technology 
• Industrialization 
• Money/finance/lobbyists/etc 
• Society/agriculture/states  
• Weapons 
• Bipedalism/balance 

{case study} 

U 

• Brains 
• Familiar, accessible 
• Live demos! 
• Cheap, reproducible 
• Open 
• Unavoidable 
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fragile 

robust 

“costly” “efficient” 

Similar 
• Tradeoffs 
• Laws 
• Mechanisms 
But simpler 
• Models? 
• Experiments? 
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• Laws 
• Mechanisms 
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• Experiments 



Simplified inverted pendulum 

Act 

l Yoke Peng Leong  



l 

l  length (to COM) 
g gravity 
v control (acceleration) 

y 

x 

θ 

v 

Simplified inverted pendulum 

Act 

l



l 

l  length (to COM) 
g gravity 
v control (acceleration) 

y 

x 

θ 

v 

Simplified inverted pendulum 

Act 

gp
l

=

Instability 

sin cos
sinO

x
l g v
y x l

v
θ θ θ

θ
+ = −
= +

=




l



eye vision 

Act 

delay 
l

N noise 
E error 

( ) ET j
N

ω =

Simplified sensorimotor control 

gp
l

=

Instability 

Control? 



.3sτ ≈

eye vision 

Act 

delay 
l

N noise 
E error 

( ) ET j
N

ω =

Simplified sensorimotor control 

gp
l

=

Instability 



Amplification (noise to error)?  

eye vision 

Act 

delay 

Control 

l

N 
E 

( ) ET j
N

ω =

gp
l

= .3sτ ≈

Instability 



Entropy rate 

Energy (L2) 

eye vision 

Act 

delay 

Control 

l

N 
E 

( ) ET j
N

ω =

gp
l

= .3sτ ≈

( ) ( )
exp ln

exp
T

p
T

τ
∞

 ≥


∫Amplification (noise 
to error) theorem: 

Necessary! 



Intuition 

( )exp pt

delay τ

Before 
you can 

react 

time 

state 1p
l

∝

.3sτ ≈

Entropy rate 

Energy (L2) 

( ) ( )
exp ln

exp
T

p
T

τ
∞

 ≥


∫



P 

+ 

noise 

error 

C 

( ) ET j
N

ω =

( ) ( ){ }sup sup Re( ) 0|T T j T s sω
ω

= = ≥∞
Max modulus 

Proof? 

( ) ( ) ( )
( )

( )

1

exp

( ) ( ) exp

exp

Ms P s s

T M M p p p

T p

P τ

τ

τ

−
≥ ≥ ≥

≥

∞ ∞

∞

= − ⇒

= Θ

⇒

( ) ( )
1

1

( ) ( )

P p T p

M p p −

= ∞⇒ =

⇒ = Θ

( ) ( )
( ) ( ) ( ) ( ) 1

exp

T s M s s j

s s

ω

τ

= Θ Θ =

Θ = −

Undergrad math 



0.2 0.4 0.6 0.8 1 

2 

4 

6 

8 

10 

  0 

Length l, m 

.3sτ = Shorter? 

( )expT pτ≥

fragility 

gp
l

=

sin cos
sinO

x v
l g v
y x l
θ θ θ

θ

=

+ = −
= +





delay 

noise 

error 

Length l 

.3sτ =



0.2 0.4 0.6 0.8 1 

2 

4 

6 

8 

10 

  0 

Length l, m 

.3sτ = Shorter 

fragility 

gp
l

=

( )exp pτ
sin cos

sinO

x v
l g v
y x l
θ θ θ

θ

=

+ = −
= +





delay 

noise 

error 

Length l 

.3sτ =

( )expT pτ≥



0.2 0.4 0.6 0.8 1 

2 

4 

6 

8 

10 

  

( ) ( )
exp ln

exp
T

p
T

τ
∞

 ≥


∫

0 

Theory  

Length l, m 
delay 

noise 

error 

Length l 



0.2 0.4 0.6 0.8 1 

2 

4 

6 

8 

10 

  

( ) ( )
exp ln

exp
T

p
T

τ
∞

 ≥


∫

0 

Hard 
Harder Theory  

& Data 

Length l, m 
delay 

noise 

error 

Length l 



eye vision 

Act 

delay 

Control 

l

N 

E 

( ) ET j
N

ω =

gp
l

= .3sτ ≈

Necessary! 

Entropy rate 

Energy (L2) 

( ) ( )
exp ln

exp
T

p
T

τ
∞

 ≥


∫Robust to 
“noise” model 



fragile 

robust 

crash 

short long 

hard 

harder 

Law #1 : Mechanics 
Law #2 : Gravity 
Law #3 : Light/vision 
Law #4 :  ( )expT pτ≥



eye vision 

Act 

delay 

Control 

l

N 
E 

( ) ET j
N

ω =
gp
l

= .3sτ ≈

Necessary! 

Universal laws 
Mechanics+ 

Gravity + 
Light + 

( ) ( )
exp ln

exp
T

p
T

τ
∞

 ≥


∫
fragile 

robust 

crash 

short long 

hard 

harder 



hard harder ??? 

l

Ol



harder ??? 

Ol l≤

Ol l≥

Ol



( ) ( )
exp ln

exp
T z pp

z pT
τ

∞

 + ≥
−

∫

Unstable zeros 

( )2
1 11 1

1 1

O

O

O

O

g gz p
l l l

l l lz p
z p l l l

l z p
l z p

ααα
αα

= =
−

+ −+
=

− − −

+ −+ + −
= → = =

− − −

Simple analytic formulas 



P 

+ 

noise 

error 

C 

( ) ( ){ }sup sup Re( ) 0|T T j T s sω
ω

= = ≥∞
Proof? 

( ) ( )

( ) ( ) ( ) ( ) 1

exp

T s M s s j
s zs s
s z

ω

τ

= Θ Θ =

−
Θ = −

+

( ) ( ) ( )

( )

( )

1

exp

( ) ( ) exp

exp

M
s zs P s s
s z

z pT M M p p p
z p

z pT p
z p

P τ

τ

τ

−
≥ ≥ ≥

≥

∞ ∞

∞

− = − ⇒ + 
+

= Θ
−

+
⇒

−

Undergrad math 



( )exp z pp
z p

τ +
−

10 

100 

Length, m 

  

  

.1 1 .5 .2 
2 

.3sτ =

hardest! 

( ) ( ) ( )exp
exp

ex
l

p
n z pp

z p
T

p
T

τ τ
∞

 ≥ ≥
+




−

∫

1Ol l≤ =

Theory  



( )exp pτ

( )exp z pp
z p

τ +
−

10 

100 

Length, m 

  

  

.1 1 .5 .2 
2 

1p
l

∝

.3sτ =

hardest! hard 

( ) ( ) ( )exp
exp

ex
l

p
n z pp

z p
T

p
T

τ τ
∞

 ≥ ≥
+




−

∫



hard harder hardest! 
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Fragile to 
• Up 
• Length l 
• Length lo (sense) 
• Noise 
• Medial direction 
• Close one eye 
• Stand one leg 
• Alcohol 
• Age 
• Sensorimotor delay 
• Overeducation? 

fragile 

robust 

short long 

Robust to 
• mass 
• down Instability 

Sensors/ 
actuators 

Delay 
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• Brains 
• Familiar, accessible 
• Live demos! 
• Cheap, reproducible 
• Open 
• Unavoidable 



How? Why? 
• Mechanism 
• Tradeoff 

• Architecture 
• Speed 
• Flexibility 
• Robustness 
• Virtualization 
• Diversity Fast 

Slow 
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High resolution vision  
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Flex/acc 

What components can 
build from neural 

hardware. 

Ideal 

Tradeoff 

Laws 

So far, just 
observed, no theory. 
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allows. 

Laws and 
Architectures 
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Control of 
heat shock in  

E. Coli 

El-Samad, Kurata, Doyle, 
Gross, Khammash (2005), 

Surviving Heat Shock: 
Control Strategies for 

Robustness and 
Performance. PNAS (8): 

FEB 22, 2005 
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Sequence ~100 E Coli (not chosen randomly) 
• ~ 4K genes per cell 
• >20K different in total (pangenome) 
• < 1K universally shared 
• ~ 300 essential (minimal) 
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Of course in general we have multiple controller, multiple disturbances, and multiple delay and quantizations. 
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These are the issue we want to capture. We will build a minimal model just to capture its essence. We will ignored some issues in our initial model, but will put these back in later. 
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These are the issue we want to capture. We will build a minimal model just to capture its essence. We will ignored some issues in our initial model, but will put these back in later. 
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Consider we want to control our body motion, modeled as plant P, using cortex and reflex feedback. 
We will first split the problem, and explain
- the low level reflex 
- the high level planning 
but put them together later. 




[ ]( 1) ( ) ( ) ( )rx t ax t u t r t T+ = − + −R

Comms channel R of R bits/time 

Just quantization 
(advanced warning)  

P 

H r 
remote 

muscle 

R rT delay 

0rT >

Presenter
Presentation Notes
Consider a system with just quantization and advanced warning. 
The plant dynamics is given by the formula, where
- R[u(t)] is the quantized control action 
- r is the disturbance 
We assume the control has full information of the state, disturbance, and past control actions.  
Due to communication constraints, the control action is quantized and we write it as R[u(t)]. We call Tr advanced warning because the controller can access the disturbance Tr time before the disturbance hit the actual system dynamics. 
We get a very simple formula for the optimal performance. 
 




[ ]( 1) ( ) ( ) ( )rx t ax t u t r t T+ = − + −R

Comms channel R of R bits/time 

Just quantization 
(advanced warning)  

P 

H r 
remote 

muscle 

R rT delay 

Full information 

0rT >
quant advance 

Presenter
Presentation Notes
Consider a system with just quantization and advanced warning. 
The plant dynamics is given by the formula, where
- R[u(t)] is the quantized control action 
- r is the disturbance 
We assume the control has full information of the state, disturbance, and past control actions.  
Due to communication constraints, the control action is quantized and we write it as R[u(t)]. We call Tr advanced warning because the controller can access the disturbance Tr time before the disturbance hit the actual system dynamics. 
We get a very simple formula for the optimal performance. 
 




[ ]( 1) ( ) ( ) ( )rx t ax t u t r t T+ = − + −R

Comms channel R of R bits/time 

Just quantization 
(advanced warning)  

P 

H r 
remote 

muscle 

R rT delay 

Full information 

( ) 1

||r|| 1
min sup || || 2 | |Rx a

−

∞
∞≤

= −
H R

0rT >
quant advance 

|| || sup ( )
t

x x t∞ 

Presenter
Presentation Notes
Consider a system with just quantization and advanced warning. 
The plant dynamics is given by the formula, where
- R[u(t)] is the quantized control action 
- r is the disturbance 
We assume the control has full information of the state, disturbance, and past control actions.  
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We get a very simple formula for the optimal performance. 
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If quantizer can communicate R bits, we can differentiate 2 to the power of R different levels. 
So the error in control will be at the order 2 to the power of -R, with some additional term due to system dynamics ‘a’. 
This result should be familiar for people who know rate distortion theory in information theory.   
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Next if the system has 
- only delay Ts 
- with no advanced warning
- and perfect communication
We get this formula for the optimal performance.
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Next if the system has 
- only delay Ts 
- with no advanced warning
- and perfect communication
We get this formula for the optimal performance.
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The prove here is also quite simple. 
If we have delay Ts, the disturbance can drive the state to anywhere before the delayed controller are able to control. 
Notice that the L1 norm of a operator is the induced norm for L infinity space, this result should also very familiar to you. 
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Now we can stick this together, and put both delay and quantization in the loop. 
Now we have a control action trying to cancel local disturbance w, while dealing with the quantization and delay between the feedback loop. 
It turns out this formula is remarkably simple
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And its just almost the sum of the previous delayed cost and quantized cost.
They have the term a to the power of T from the interplay between delay and quantization, but others are same. 
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And its just almost the sum of the previous delayed cost and quantized cost.
With the additional term a to the power of T times to the quantization cost that characterize the interplay between delay and quantization.
We can prove this by high school algebra, so it can also be used for teaching propose. 
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Now we can stick this together, and put both delay and quantization in the loop. 
Now we have a control action trying to cancel local disturbance w, while dealing with the quantization and delay between the feedback loop. 
It turns out this formula is remarkably simple
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Of course in general we have multiple controller, multiple disturbances, and multiple delay and quantizations. 
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Next, consider a system with two disturbances, two delays, and one controller and one quantizer. You get this quite simple formula.
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Here, both the block diagram in the formula split up quite nicely. 
You can think this system as the sum of two subsystems. The total cost is the sum of each cost. 
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Now we will consider a special case when a = 1. This is just a discretized version of an integrator. The formula can be written as this formula. 
Notice that the red term is the cost of delay 
And the blue term is the cost of quantization
 
Recall that the bandwidth R is roughly lambda times the delay, where lambda is proportional to the area of the nerve. 
As the delay increase, the delay cost goes up and the quantization cost goes down. So there is a ideal T that minimizes the cost. 
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Let’s split the system into two subsystems again. 
One is the reflex loop causing the delay cost. 
Another is the planning loop causing the quantization cost. 
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The left is the reflex loop causing the delay cost 
The right is the planning loop causing the quantization cost. 

We add additional delay tau to the system on the left. 
And advanced warning tau to the system on the right. 
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For each value of tau, whether it serves as advanced warning or extra delay, we can plug in R equals lambda T and find the optimal delay and bandwidths.
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The system behaves extremely different from the left to the right, just like our nervous system. 
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Let’s focus initially on the advanced part.

As you move toward the right hand side of the plot, you get large advanced warning, and the quantization cost dominates the total cost. 
 
This suggests if we have enough advanced warning, we can cancel the disturbance with small quantization error, with almost no effect of delay. 
 
Consequently, as you get more advanced warning, both the optimal bandwidths and the delay increase. The optimal performance is achieved when the system has great delay and high bandwidth.
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This is exactly the case on the right hand side of the doyle-gram, as we discussed before. 
You can be very robust, but you need large bandwidth. 
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Now we can look into our speed and accuracy tradeoff on the nerve level. 
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For a system with large advanced warning such as in olfactory, optic system, the nerve are build to achieve high bandwidth at the cost of large delay. 
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For a system with large advanced warning such as in olfactory, optic system, the nerve are build to achieve high bandwidth at the cost of large delay. 



10 -1 

10 0 

10 1 

-4 -2 0 
-2 
0 
2 
4 

10 -1 

10 0 

10 1 

1 2 3 4 
-2 
0 
2 
4 

advance (τ )  delay (-τ )  

P 

L 

w

R
Tτ

P 

H r 

R
T

τ

( ) ( ) 1
ma ,0 2 1x TTR T λτλ

−
+−→ −=

delay quant 

delay 
quant 

cost 

advance (τ )  
delay (-τ )  

T -τ T 

R 

Presenter
Presentation Notes
Let’s see how it goes in delayed case. 
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Large delay causes us to be in this fragile regime. 
We have large cost dominated by delay, and thus we need high speed to deal with that. 
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We can observe low bandwidth and low delay particularly in spinal nerves.
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We can observe low bandwidth and low delay particularly in spinal nerves.
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So this simple model has able to, for the first time, rigorously connect nerve level physiology with robustness in sensorimotor control.




MIMO system with 
• Uniform quantizers throughout 
• Potentially distributed control and information sharing  

Method 
• Use any existing (distributed) controller synthesis methods to 

design the controller 
• Solve a linear program to design the uniform quantizers 

Benefits  
• Achieve BIBO stability  
• Provide upper bound for the achievable cost 

 

MIMO system extension  Y.N., S. You (2015), A linear programming framework for 
networked control system design, Necsys.  
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We have the simple model, now we are interested in more general system. 
We want to deal with multiple controllers, multiple quantizers, multiple disturbances, multiple states and so on. 
 
Next, I will had it to John to discuss for further case study. 
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So this simple model has able to, for the first time, rigorously connect nerve level physiology with robustness in sensorimotor control.
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First of all, our bodies are much more complicated than the toy model we started with… large scale networked, distributed, heterogeneous etc.

But there’s something even more fundamental missing here…. We don’t live our lives going to zero… if we did we’d all be dead…  we do things, we have high-level objectives that are much more complex than just disturbance rejection…
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