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Compute/control technology
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Maternal care

Warm blood
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Mitochondria

Oxygen

Translation (ribosomes)
Glycolysis

Major
transitions
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Theory of

Compute comms for_ e Evolution
Comp/Cntrl/Bio i
o Architecture
o Complexity
 Networks
Optimization Statistics

Orthophysics

Control, OR (Eng/Bio/Math)



SDN, NFV, IOT, IOE, CPS Theory of
Compute/control technology e Evolution
e Architecture
o Complexity

* Networks
Bipedalism (balance,
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Flight (turbulence) CeNe
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SDN, 10T, IOE, CPS, etc. e Brains

Compute/control technology * Bugs (microbes, ants)
Industrialization * Nets/Grids (cyberphys)
Money/finance/lobbyists/etc * Medical physiology
Soclety/agriculture/states e Lots of aerospace
V\_/eapons Theorems+ * Wildfire ecology
Bipedalism e Earthquakes
Maternal care (N{case study} e Physics:

Warm blood — turbulence,
Flight | — stat mech (QM?)
Mitochondria IFundamentals!I e “Toy”:

Oxygen / | — Lego
Translation (ribosomes) 7 — clothing, fashion
Glycolysis e Buildings, cities

Synesthesia



 Compute/control technology

e Industrialization e Brains

* Money/finance/lobbyists/etc e Familiar, accessible
e Society/agriculture/states e Live den’ms!

° Weapons « Cheap, reproducible
* Bipedalism/balance » Open

e Unavoidable

N{case study}

| Brains/balance |




Laws = Tradeoffs (Evolution)

fragile
Function=
Locomotion
robust

efficient costly
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Similar
 Tradeoffs

e [Laws

e Mechanisms
But simpler

e Models?

e EXperiments?

fragile

“efficient”



Similar
 Tradeoffs

e [Laws

e Mechanisms
But simpler

* Models

e EXperiments

£

fragile

short long




Simplified inverted pendulum

Yoke Peng Leong




Simplified inverted pendulum

y

<€ >

I length (to COM)

g gravity
v control (acceleration)




Simplified inverted pendulum
Instability Yy

<€ >

I length (to COM)

g gravity
v control (acceleration)

X=V

16 + gsin®d =—vcoso
y=x+1,sIn6O




Simplified sensorimotor control

N noise
E error
___Z
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Simplified sensorimotor control

N noise

E error

Instability

Act



Amplification (noise to error)?

T(jo) ==

0 = 9 T| delay| 7 =.3S

o
Instability | Control



Amplification (noise
to error) theorem:.

Entropy rate €Xp (

Energy (L2)

exp( pr)




Entropy rate  €Xp [I In ‘T ‘) L > exp( DT)
Energy (L2) Tl
| INntuition
1/
1 /
—
state ’ 1
exp( pt) | Before p > N I_
I you can
| react
| T ~.3S

delay 7 time



Proof?

error

to-{ch
noise @(_

T (i)~ (5]

Undergrad math

[Too =sup[T (i) =SU|O{\T (s) | Re(s) o}

Max modulus

T(s)=M(s)0(s) |O(jow)| =1
O(s)=exp(-rs)

P(p)=w=T(p)=1
= M(p)=0(p)™

P(s)=Py (s)exp(-7s)=

Tl =1
=T

M|, =M (p)|=
. zexp(zp)

o(p)™

>exp(zp)
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fragility X=V

10, . ]
|60 + gsind =—-vcosd
T|=exp(pr ex
MIzexp(pr) o \exp(pr) ) ing
noise g
6 _ |2
error P |
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Length |, m
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exp [Iln\T‘)\ - I

->exp(pr)|
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6 Harder
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Robust to
“noise” model

T (jo)| =

Entropy rate €Xp

Energy (L2)

exp( pr)




_aw #1 : Mechanics
_aw #2 . Gravity
_aw #3 : Light/vision

Law #4 - ‘TH > exp( pr)

crash

br

fragile harder

hard

robust

short long



Universal

laws

Mechanics+ eXp(Iln\T\)\

Gravity +
Light + | |T|

- > exp( pr)

fragile & |
crash harder
hard

robust

short long

vision
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exp([In[T)

- > exp( pr)
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Unstable zeros




Proof? ITlloo =Sg)p‘T(J'a))‘ :SUP{‘T (5) ‘ Re(s)2 O}

error

o

noise @(_

Undergrad math

T(s)=M(s)0(s) |B(jw)|=1

O(s)=exp(-7s)

S—17
S+ 12

S+ 12

P(s)=P, (s)[exp(—rs) >~ Z} =

Tl =M, =M (P[>

=T, >exp(zp)

O(p)™

Z+p
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7 =.3S eXp(jmm)>2exp(pr) ch >exp( pr)

exp( pr)

O




7 =.3S eXp(jmm)>2exp(pr) et b > exp( pr)




Q What Is sensed matters.

hardest!

Unstable pole Unstable zero




exp Uln\T\)j

> exp( pr)

hardest!




7 =.3S exp[In[T])

- - > exp( pr) £ b > exp( pr)
Tl. 2P
100 e
f exp( pr) P
Q hardest! Q
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slow fast
- delay (-7))



fragile \ a
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Robust to Fragile to
Instabilit
* down * Lengthl } y
 Lengthl, (sense) =~
fragile  Noise
* Medial direction
O « Close one eye a Sensors/
» Stand one leg actuators
e Alcohol
e Age
robust . Sensorimotor delay [~ Delay

short long « Overeducation?

[



Simplified sensorimotor control

N noise

E error

Instability

Act



T ~.3S



NS |
D e Brains
) »./

 Familiar, accessible
e Live demos!
 Cheap, reproducible
e Open
 Unavoidable
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Slow

)

A\

How? Why?
e Mechanism
e Tradeoff

 Architecture
e Speed

e Flexibility

e Robustness
 Virtualization
* Diversity



= J = Object

i

\ v/f motion

Slow vision

Flexible
Accurate



I
Does not use-

“vision” ?
Fast VOR VeS“bUIar
Ocular
Reflex

Inflexible
Inaccurrate (VOR)



Mechanism ©Object
motion

Slow ‘\Aﬁon‘

Tradeoff

Fast VOR

Flexible Inflexible
Accurate Innac.

Head
motion

fast

Minimal cartoon

slow



High resolution vision
robust w/motion

e Object motion

e Self motion




High resolution vision
robust w/motion
e Object motion

e Self motion Fast
ol ' ' : Rugged

‘vision‘ Tradeoff

Flexible
Accurate



‘ vision ‘ Tradeoff

Flexible
Accurate



Laws

Tradeoff What components can
Slow o build from neural
V{SI
_’*v\ hardware.
//77,00\\\
Sa .
S/é/ N
%, ~or
Fast | w.ad< S
Ideal Y

[opoe 3 So far, just

Flex/acc Elex/ace observed, no theory.



Laws and
Architectures

What good
architecture
allows.

Slow Vj\gion

Flex/acc Inflexible



Slow

Fast

VISIion

/
Tuned

bl

What good
architecture
allows.

VOR

Flex/acc Inflexible



Computer memory

1\ Slow \HDD
>Ne SDD
1e8 N

<~ main
~

Fast | Memory \\\CaChe |
components. ~ . registers

Large Small
Cheap Expensive

e lell —>



What good
architecture
allows.

Slow

Virtual memory

Fast W.L

1\ Slow | HDD

SN o SDD Large Small
< main
~

Fast | Memory \\\CaChe |
components. ~ registers

~

Cheap Expensive

Large Small
Cheap Expensive

&——lell —>



Contradiction?

What good
architecture

Slow Vj\gion

—~— / allows.
N /

\\
\A‘l\

Fast

Flex/acc Inflexible



Slow

Tuned to a specific
environment

Fast

Flex/acc Inflexible

J



May be fragile Iin
other environments

whad

Slow Fragilg
Tuned to a specific
Fast poe environment

Flex/acc Inflexible



Fast

(A1l 1IN

Flex/acc

Object
motion

Head
motion

Inflexible

<9




slow

Summary so far.

e Next important piece?



slow

fast These sighals must “match”

Next important piece?



Object
motion

Head
motion

VOR

VOR and visual
gain must match



Object
motion

Head
motion

Error

Cerebellum

AOS = Accessory Optical system



Mechanism

Tradeoff

Slow

Fast

Flex/acc

Object
motion

Head
motion

v

Reflex

Inflexible

fast

gain

Tune
gain

=

eye
Cortex
slow
Act
delay
|
AOS f& = = — =
Error
Cerebellu




Object

Mechanism motion

Head
motion

Tradeoff
Slow
Cortex
Cerebellu
Y |
' Reflex
Fast Tuned [Reflex |

 ooh

Flex/acc Inflexible

/




Tradeoff

Slow

Fast

Mechanism Lﬁr

bject

B

Ok

Cortex \ /
Cerebellu

y |

Tuned
w

Flex/acc

Inflexible

Highly
evolved
(hidden)

architecture



Object @
motion Q 1 A

slowest

Act

Distributed

control Cortex

slow

Cerebellu

Heterogeneous
delays

everywhere

AOS = Accessory Optical system



Heterogeneous
delays




Object
motion

Head | direct,
motion fast

fast

“forward”
path is

necessary

AOS = Accessory Optical system



Object ‘
motion
motion fast |

fast
“forward” Needs
path IS | feedbaCk Via AOS and
necessary tuning cerebellum

AOS = Accessory Optical syst (not cortex)




direct,
fast

slower

-'
feedbacks |/
Tunelgaw v

Heterogeneous
delays




Common pattern

direct, \

fast
slower

feedbacks '

Flexible Inflexible
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Heat Control of
= heat shock In

— E. Coli
s
feedbacks | El-Samad, Kurata, Doyle,
'\ Gross, Khammash (2005),
Surviving Heat Shock:
’ / Control Strategies for
e

*
r 4
8
N
n
n
[ ]
L ]
rs

Robustness and
X = Performance. PNAS (8):

FEB 22, 2005



Control of
G MRNA | heat shock in
E. Coli

< mechanism

El-Samad, Kurata, Doyle,
Gross, Khammash (2005),
Surviving Heat Shock:
Control Strategies for
Robustness and
Performance. PNAS (8):
FEB 22, 2005

DnaK




Where function iIs

controlled | -
e R
Universal ....: DnaK
tradeoff Loperons ;- ’ -' L
7=
Slow Crarf/ (Foner
Gene\ V’ @L @ %
Transcription/ Qﬁﬂb el
Translation bnaK | Fish | Lon =0l
T~
Protein

Fast

Flexible Inflexible



« Universal?
« Domalin specific?

Gene
~—
Slow Trans*
Cortex \P o
rotein
Tradeoffs

Fast
Flexible Inflexible

Object
motion

Head
motion

\

:' Ower 73

| Mechanisms

.
slow

P.DBI ons:
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Where function is

controlled
Gene \ Universals
Slow AppS‘\Trans*
Cortex oS \ .
\Proteln
Cerebellu LW
Fast

Flexible Inflexible



How function iIs
most flexibly
controlled

Horizontal

Transfer Trans*

Slow

OS

\P
Cerebellu

Cortex ,
rotein

Horizontal
Transfer

Fast

Flexible Inflexible



Accelerating
evolvabality

Horizontal
Transfer

Fast
Costly

Elexible  Inflexible S

General SpeCiaI |



Accelerating
evolvabality

Horizontal

Computers \

HW

Fast
Costly

Flexible Inflexible

General Special
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Universal

Computers

Fast
Costly

Flexible Inflexible

General Special
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Accelerating

Horizontal -
Transfer evolvabality
Gene \Unlversal

Slow .
Cheap Apps"\Tran S* Bacteria
OS \ .
Proteln
Computers \

HW

Fast
Costly

Flexible Inflexible

General Special



How function iIs

Horizontal most flexibly
Gene controlled
Transfer
Slow
Gene \
Trans*
Protein

Fast

Flexible Inflexible



| Accelerating
Horizontal evolvabality

Protein
Fast

Flexible Inflexible



Horizontal
Gene
Transfer

Sequence ~100 E Coli (not chosen randomly)
e ~ 4K genes per cell

e >20K different in total (pangenome)

e < 1K universally shared

e ~ 300 essential (minimal)




Horizontal W_me

Meme N m meme meme
Transfer —— LT

Horizontal

Cerebellu

P

[llusion

Fast :
Horizontal

Tool
Transfer

Inflexibl

Flexible




Horizontal W_me

Meme N m meme meme
Transfer —— LT

Horizontal

Horizontal
Tool
Transfer

Flexible Inflexibl




Horizontal wm@'

meme -
Meme  Sf ¢ Horizontal

2 7
Transfer (ﬁ\ m
70

Mem4
DWWV

Cerebellu

Fast )
Horizontal

Tool
Transfer

Flexible Inflexibl




Horizontal Learning

Meme
Transfer \
. Automatic
Planning .
Slow — Unconscious
Cortex
Fast

Horizontal
Tool
Transfer

Flexible Inflexibl




Dlve rse

Not
Cerebellu

orizontal

Fast )
Horizontal

Tool
Transfer

Flexible Inflexibl




Horizontal

Diverse

e [N\ ] Trans’

=

NOt Protein

Cerebellu —

Fast Dlere ontal
= rdware

Flexible Irl‘lfllﬁé(. Transfer



Horiz
- Easily evolvable

= ﬂi—h—-“ Trans*

J_ OS| Not .
Protein

E
| Evolvablemal
Fast pr—

s—rrardware

Transfer

Flexible Inflexible




Local invention
e Mutate

« Write code

e Have an idea

Horizontal

Trans*

OS

Protein
Cerebellu \
HW

Fast

Flexible Inflexible



Local invention
e Mutate

« Write code

e Have an idea

Houj
Trd Potentially
rewarding, but
* Slow Trans*

* Incremental \
\Protein

HW

Fast

Flexible Inflexible



Local invention
e Mutate

« Write code

e Have an idea

Hounl
Treg Potentially
rewarding, but
 Slow

 |Incremental

» Buggy

OS-enabled
mechanisms

Fast

. Flexible Inflexible




Hijacking

Protein

Fast « HW

Flexible




Predators

don’t care
about
architecture
OK to
Ignore/destroy

architecture




Predators

don’t care
about
architecture
OK to
Ignore/destroy

architecture

Reflex |

Consumes physical
building blocks



Parasites
hijack
architectures

Virtualized
Slow T ' ~ . d

(hitHen) ~— "

Fast I"uS‘Oh

e
Flexible Inflexible
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Zombie parasites
hijack complex

Gene behaviors
Aeo Mrtualize
S|OWT PP ~ ahd

Cort .
brtex ~ "\'teﬂ'\al Protein

(hitHen) ~— "

Fast I"uS‘Oh

e
Flexible Inflexible
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Of course in general we have multiple controller, multiple disturbances, and multiple delay and quantizations. 
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These are the issue we want to capture. We will build a minimal model just to capture its essence. We will ignored some issues in our initial model, but will put these back in later. 
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These are the issue we want to capture. We will build a minimal model just to capture its essence. We will ignored some issues in our initial model, but will put these back in later. 
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Consider we want to control our body motion, modeled as plant P, using cortex and reflex feedback. 
We will first split the problem, and explain
- the low level reflex 
- the high level planning 
but put them together later. 
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Consider a system with just quantization and advanced warning. 
The plant dynamics is given by the formula, where
- R[u(t)] is the quantized control action 
- r is the disturbance 
We assume the control has full information of the state, disturbance, and past control actions.  
Due to communication constraints, the control action is quantized and we write it as R[u(t)]. We call Tr advanced warning because the controller can access the disturbance Tr time before the disturbance hit the actual system dynamics. 
We get a very simple formula for the optimal performance. 
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Consider a system with just quantization and advanced warning. 
The plant dynamics is given by the formula, where
- R[u(t)] is the quantized control action 
- r is the disturbance 
We assume the control has full information of the state, disturbance, and past control actions.  
Due to communication constraints, the control action is quantized and we write it as R[u(t)]. We call Tr advanced warning because the controller can access the disturbance Tr time before the disturbance hit the actual system dynamics. 
We get a very simple formula for the optimal performance. 
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Consider a system with just quantization and advanced warning. 
The plant dynamics is given by the formula, where
- R[u(t)] is the quantized control action 
- r is the disturbance 
We assume the control has full information of the state, disturbance, and past control actions.  
Due to communication constraints, the control action is quantized and we write it as R[u(t)]. We call Tr advanced warning because the controller can access the disturbance Tr time before the disturbance hit the actual system dynamics. 
We get a very simple formula for the optimal performance. 
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If quantizer can communicate R bits, we can differentiate 2 to the power of R different levels. 
So the error in control will be at the order 2 to the power of -R, with some additional term due to system dynamics ‘a’. 
This result should be familiar for people who know rate distortion theory in information theory.   
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Next if the system has 
- only delay Ts 
- with no advanced warning
- and perfect communication
We get this formula for the optimal performance.
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Next if the system has 
- only delay Ts 
- with no advanced warning
- and perfect communication
We get this formula for the optimal performance.
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The prove here is also quite simple. 
If we have delay Ts, the disturbance can drive the state to anywhere before the delayed controller are able to control. 
Notice that the L1 norm of a operator is the induced norm for L infinity space, this result should also very familiar to you. 
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Now we can stick this together, and put both delay and quantization in the loop. 
Now we have a control action trying to cancel local disturbance w, while dealing with the quantization and delay between the feedback loop. 
It turns out this formula is remarkably simple
 


delay
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And its just almost the sum of the previous delayed cost and quantized cost.
They have the term a to the power of T from the interplay between delay and quantization, but others are same. 
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And its just almost the sum of the previous delayed cost and quantized cost.
With the additional term a to the power of T times to the quantization cost that characterize the interplay between delay and quantization.
We can prove this by high school algebra, so it can also be used for teaching propose. 
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G. Nair et al., (2007) Feedback control under data rate constraints: An overview
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Now we can stick this together, and put both delay and quantization in the loop. 
Now we have a control action trying to cancel local disturbance w, while dealing with the quantization and delay between the feedback loop. 
It turns out this formula is remarkably simple
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Of course in general we have multiple controller, multiple disturbances, and multiple delay and quantizations. 
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Next, consider a system with two disturbances, two delays, and one controller and one quantizer. You get this quite simple formula.
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Here, both the block diagram in the formula split up quite nicely. 
You can think this system as the sum of two subsystems. The total cost is the sum of each cost. 
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Now we will consider a special case when a = 1. This is just a discretized version of an integrator. The formula can be written as this formula. 
Notice that the red term is the cost of delay 
And the blue term is the cost of quantization
 
Recall that the bandwidth R is roughly lambda times the delay, where lambda is proportional to the area of the nerve. 
As the delay increase, the delay cost goes up and the quantization cost goes down. So there is a ideal T that minimizes the cost. 
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Let’s split the system into two subsystems again. 
One is the reflex loop causing the delay cost. 
Another is the planning loop causing the quantization cost. 
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The left is the reflex loop causing the delay cost 
The right is the planning loop causing the quantization cost. 

We add additional delay tau to the system on the left. 
And advanced warning tau to the system on the right. 
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Y.N., N.M. and J.D (2015), Hard Limits on Robust Control over Delayed and
Quantized Communication Channels with Applications to Sensorimotor Control.
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For each value of tau, whether it serves as advanced warning or extra delay, we can plug in R equals lambda T and find the optimal delay and bandwidths.
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The system behaves extremely different from the left to the right, just like our nervous system. 
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Let’s focus initially on the advanced part.

As you move toward the right hand side of the plot, you get large advanced warning, and the quantization cost dominates the total cost. 
 
This suggests if we have enough advanced warning, we can cancel the disturbance with small quantization error, with almost no effect of delay. 
 
Consequently, as you get more advanced warning, both the optimal bandwidths and the delay increase. The optimal performance is achieved when the system has great delay and high bandwidth.


Large advance —

guant dominates cost Nmo
and cost > 0

delay quant

1071

INS A need

accuracy

Wt

1
max (T —r,0)+(2]LT —1)

delay guant

>
advance

advance


Presenter
Presentation Notes
This is exactly the case on the right hand side of the doyle-gram, as we discussed before. 
You can be very robust, but you need large bandwidth. 
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Now we can look into our speed and accuracy tradeoff on the nerve level. 
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For a system with large advanced warning such as in olfactory, optic system, the nerve are build to achieve high bandwidth at the cost of large delay. 


Large advance —

guant dominates cost

and cost - 0

guantization

erro
spinal
1

— Sciatiéy,

Vestibula?? ranial ’
Audito k Olfactory

Accurate Optic N
\ |

Fast | =delay o 1
0

C
R=AT

cost

by SR
\ 100 TTTTTTTTT O
w

delay‘ “gquant

-1
R = AT — max(T -7,0)+(2*" -1

1071 S
advance

-
- l-‘- ]
F L

‘2‘ Bandwidth (R) and
o delay (T) increase

-2

advance (7) advance


Presenter
Presentation Notes
For a system with large advanced warning such as in olfactory, optic system, the nerve are build to achieve high bandwidth at the cost of large delay. 
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Let’s see how it goes in delayed case. 
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Large delay causes us to be in this fragile regime. 
We have large cost dominated by delay, and thus we need high speed to deal with that. 
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We can observe low bandwidth and low delay particularly in spinal nerves.
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We can observe low bandwidth and low delay particularly in spinal nerves.
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So this simple model has able to, for the first time, rigorously connect nerve level physiology with robustness in sensorimotor control.



. Y.N., S. You (2015), A linear programming framework for
M | MO SyStem extension networked control system design, Necsys.

» MIMO system with
« Uniform quantizers throughout
« Potentially distributed control and information sharing

» Method

e Use any existing (distributed) controller synthesis methods to
design the controller

e Solve a linear program to design the uniform quantizers

» Benefits
* Achieve BIBO stability
* Provide upper bound for the achievable cost
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We have the simple model, now we are interested in more general system. 
We want to deal with multiple controllers, multiple quantizers, multiple disturbances, multiple states and so on. 
 
Next, I will had it to John to discuss for further case study. 
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So this simple model has able to, for the first time, rigorously connect nerve level physiology with robustness in sensorimotor control.
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First of all, our bodies are much more complicated than the toy model we started with… large scale networked, distributed, heterogeneous etc.

But there’s something even more fundamental missing here…. We don’t live our lives going to zero… if we did we’d all be dead…  we do things, we have high-level objectives that are much more complex than just disturbance rejection…
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